Kaggle Competition Report - Machine Learning Course
Flex.ai Team

Louis De Oliveira, Alexandre Sajus, Clement Wang, Antoine Debouchage

January 2022

Introduction

I. Feature Engineering

”Feature engineering refers to the process of using domain knowledge to select and transform the most
relevant variables from raw data when creating a predictive model using machine learning or statistical
modelling.” In this competition, this is particularly the case as we are dealing with dates, urban and
geographical types and the geometry of each data which all have a deep meaning on the way to classify
them. We managed to create more than 400 features using the fact that our final model was performing
feature selection. There are too many individual features to list, but the general categories that they fall
into are detailed below.

Dates

In order to exploit the given dates, we first split all the dates into new features : day,month, year. Then
we compute the gap between each date and add these as new features as well.

Categorical features: Urban, Geographical, Change Status

We replaced the Urban types and geopgraphy types columns by many columns encoding their contents
with binary attributes.

Geometry

A good way to differentiate roads from other projects would be to extract the road’s length and width as
a feature. A road will have a high length/width ratio, while other projects won’t. These features (length,
width, and their ratio) could also be useful features in general.

Closest Neighbours discovery

Running out of ideas, we decided to investigate in further detail the test and train dataset provided. We
discovered that the datasets were not shuffled and that it was blocks of buildings from the same satellite
view. Taking advantage of this, we added lots of features corresponding to some major characteristics
(area, perimeter, ratio, representative points...) of the k closest neighbour being in a certain radius
intending to make our model understand the links between high-density residential districts and industrial
areas. Adding the density of buildings to a distance also helps the model.

This is the idea that generates most of our features, because we can harvest information from all the
original features of each neighbor, and then add means.

23380 " B
A Commercial Project's Geometry 23.375 4
A Road Project’s Geometry D00gs 220000000] — . Ew
+2 33500000001 i e |I 23.370 4 1.
0006 00096 \ | -
\ | 23.365 -
0005 0,004 | \
_ |
o - |
0004 - Re—— . \ '| 23.360 -
e |
—_— \ | L g
0003 \ 23.355 - L :
00050 \ || e SEW
0,002 00088 I| P T T T T
— 85.38 85.39 85.40 85.41
- 006 0005 — - 02 —0,00 o0 0 00046 QD048 Q0050 00052 Q0054 DOO5E 00058 00060
0.007 -0.006 0005 —0.004 -0.003 -0.002 U?g!sil;coq\’gmeloﬁl +1. 169700000022
Figure 3: Neighborhood visual-
Figure 1: Road visualization. Figure 2: Commercial visualization. ization.

II. Model tuning and comparison
Select the best model

Even though experience tells us that using Gradient Boosting models such as CatBoost, Light GBM or
XGBoost are must-use techniques for winning tabular competitions in most of the cases, we are going
to investigate thoroughly every models that we encountered in the course to stick with the instructions.
Using very basic features engineering (that allowed us to reach > 68% on the public leaderboard) in
order not to overload the workload and the time spent on the competition as our final feature engineered
dataset takes a very long time to train (30min-1h), we got the results summed up in the table below:

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (Sec)
catboost CatBoost Classifier 0.7756 0.8958 0.5291 07725 07724 06290 06294 31.9680
xgboost Extreme Gradient Boosting 07723 0.8933 05292 07686 07686 06230 06237 9.4000

lightgbm Light Gradient Boosting Machine 0.7502 0.8593 05152 07488 07483 0.5883 0.5889 18.3960

Ida Linear Discriminant Analysis 0.6925 0.8291 05156 0.6948 0.6896 04912 04927 12.8100
rbfsvm SVM - Radial Kernel 06918 0.8217 03777 0.6869 06793 04723 04743 571.0380
dummy Dummy Classifier 05281 0.5000 0.1667 0.2789 0.3650 0.0000 0.0000 0.2800
f Random Forest Classifier 0.7576 0.8860 04721 07573 07532 05942 05947 45640
knn K Neighbors Classifier 0.7161 0.8321 04349 07078 07086 0.5210 05231 15000
dt Decision Tree Classifier 0.6850 07356 04551 06854 06852 04793 04793 124740
ada Ada Boost Classifier 0.6669 06471 04052 06506 06422 04196 04352 328940
Ir Logistic Regression 0.6183 0.7610 0.2728 06175 05858 0.3033 03144 3.4000
ridge Ridge Classifier 0.5634 0.0000 0.3320 06113 05645 03172 0.3253 13230
nb Naive Bayes 0.2804 06595 04332 06451 03653 0.1498 0.1966 1.0650

qda Quadratic Discriminant Analysis 0.2074 04765 0.1967 03099 0.2269 -0.0289 -0.0407 7.2440

svm SVM - Linear Kernel 0.1050 00000 0.2370 00213 00344 00412 0.0725 41.0850

Figure 4: Benchmark of different models

Without surprise, gradient boosting methods reveal to be the most cutting-edge models for this
competition. Even though F1 score is used for the competition here we did not use Mean F1, hence
it is more interpretable and coherent to evaluate our models using the MCC as it takes into consideration
the imbalanced of the data to classify.

Remark: SVM using a Linear Kernel is absolutely a "no-no” as the features do not fit into any linear
classifier solution.

Let’s switch to deep models. Indeed, for tabular data using simple machine learning algorithms often

do the trick but some networks perform relatively well and can even outperform gradient boosting ones.
We test two different kinds of networks:

1. Tabular Networks such as TabTransformer or TabMLP in an attempt for our model to understand
correlation and hidden relation between features that our feature engineering might not have cap-
tured. (= 0.61 on kaggle)

2. Simple Deep Networks such as Self-Normalizing Neural Network (SNN) and Gated Recurrent Net-
work (GRN) showed great results in some Kaggle tabular competitions. (~ 0.63 on kaggle)

The conclusion is that SNN surpasses other Neural Network tested but it did not manage to reach the
level of Light GBM, CatBoost and XGBoost. Thus, we have chosen to use XGBoost as our final model to
fine-tune.

Fine tuning and baseline

We trained all of our models using 10-fold cross-validation in order to keep track of the changes of
hyperparameters that led to the best results.
XGBoost has many hyperparameters. The most important ones are :

e The learning rate n

A and a two regularizer parameters

e The number of samples per tree

The number of features per tree

The number of trees. This one will be replaced by a callback function to early stop the training if
there is no gain in terms of loss.

All the other hyperparameters are tuned by hand to have a better understanding of the influence of
each parameter.

Conclusion

Using only tabular data is a big restriction for better results as well as the highly imbalanced datasets
provided for training the model. Indeed, under-represented classes (4,5) were abandoned automatically
during training and class 2 and 3 are too highly correlated as a commercial building is just from above
a residential one in terms of geometry and often located among residential residences resulting in lots
of misclassification between both classes. We plotted the number of misclassified instances between to
training results and it appears that almost 10% of the predicted train data are confused about those two
classes.

38.895 sl s2

1200

. 1000
I - II II
I 800

38.890 5 ’ 1200 =
36 885 1000 I
38.880 we 00 I
38875 200 I
368 870 I

i

00
IBBES | 1

200 200
38 860 I I II II
0.06 0.07 0.08 0.09 o o

+1.1690000000e2 0 2 4 1 2 3 4

Figure 5: District with residential and Figure 6: Misclassified classes between two
commercial building. runs.

